Acta Crystallographica Section E

 Structure Reports

 Structure Reports
 Online
 ISSN 1600-5368
 Poly[octaaquadi $-\mu$-phosphato-trinickel(II)]

Jin Shouwen, ${ }^{\text {a }}$. Daqi Wang, ${ }^{\text {b }}$ Xinjun Gao, ${ }^{\text {a }}$ Xianhong Wen ${ }^{\text {a }}$ and Jianzhong Zhou ${ }^{\text {a }}$

${ }^{\text {a }}$ Faculty of Science, ZheJiang Forestry University, Lin'An 311300, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Liaocheng University, Shandong 252059, People's Republic of China
Correspondence e-mail: jinsw@zjfc.edu.cn
Received 26 October 2007; accepted 14 December 2007
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.003 \AA$; R factor $=0.030 ; w R$ factor $=0.080$; data-to-parameter ratio $=10.1$.

In the title compound, $\left[\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{n}$, which was synthesized hydrothermally, all the Ni atoms are located in slightly distorted octahedral coordination environments. Two phosphate groups and two Ni atoms share a centrosymmetric four-membered ring and an eight-membered ring such that the four-membered ring is inside the eight-membered ring. The eight-membered rings are connected with the other Ni atoms (lying on centres of symmetry) through phosphate anions, generating a one-dimensional chain structure. Adjacent chains are connected through hydrogen bonds, forming a threedimensional network.

Related literature

For related literature, see: Chang et al. (2004); Gao et al. (1999); Ke et al. (2001); Kuratieva et al. (2003); Nardelli (1999); Sanz et al. (1999); Wang \& Gao (2005a,b).

Experimental

Crystal data
$\left[\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]$
$M_{r}=510.14$

$$
\begin{aligned}
& b=13.225(4) \AA \\
& c=4.6406(14) \AA \\
& \beta=104.730(3))^{\circ} \\
& V=591.4(3) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection
Bruker SMART APEX CCD
Diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.351, T_{\text {max }}=0.414$
$($ expected range $=0.291-0.343)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 55$ parameters
$w R\left(F^{2}\right)=0.080$
$S=1.10$
553 reflections

Mo $K \alpha$ radiation
$\mu=5.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.26 \times 0.23 \times 0.21 \mathrm{~mm}$

1516 measured reflections 553 independent reflections 513 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.85	1.87	2.700 (3)	164
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {ii }}$	0.85	1.98	2.731 (3)	147
$\mathrm{O} 5-\mathrm{H} 3 \cdots \mathrm{O} 3^{\text {iii }}$	0.85	2.00	2.761 (3)	149
$\mathrm{O} 5-\mathrm{H} 4 \cdots \mathrm{O} 4^{\text {iv }}$	0.85	2.07	2.906 (3)	167
Symmetry cod $-x+1,-y,-z$	$\begin{align*} & \quad-x+2,-y,-z+2 \text {; } \tag{ii}\\ & \text { (i) } \\ & \text {) } x-\frac{1}{2},-y+\frac{1}{2}, z-1 \text {. } \end{align*}$			

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Zhejiang Forestry University Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2061).

References

Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Chang, J., Hwang, J., Jhung, S. H., Park, S. E., Ferey, G. \& Cheetham, A. K. (2004). Angew. Chem. Int. Ed. 43, 2819-2822.

Gao, Q., Guillou, N., Nogues, M., Cheetham, A. K. \& Ferey, G. (1999). Chem. Mater. 11, 2937-2947.
Ke, Y. X., He, G. F., Li, J. M., Zhang, Y. G. \& Lu, S. M. (2001). New J. Chem. 25, 1627-1630.
Kuratieva, N. V., Naumova, M. I., Naumov, D. Yu. \& Podberezskaya, N. V. (2003). Acta Cryst. C59, i1-i3.

Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Sanz, F., Parada, C., Rojo, J. M. \& Ruiz, V. C. (1999). Chem. Mater. 11, $2673-$ 2679.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.
Wang, X. L. \& Gao, Q. M. (2005a). J. Inorg. Mater. 20, 699-705.
Wang, X. L. \& Gao, Q. M. (2005b). Chin. J. Inorg. Chem. 19, 73-76.

supplementary materials

Poly[octaaquadi- ${ }^{\mu}$-phosphato-trinickel(II)]

J. Shouwen, D. Wang, X. Gao, X. Wen and J. Zhou

Comment

In recent years, nickel phosphates as a rich class of inorganic materials, have undergone significant expansion due to their potential application (Chang et al., 2004; Gao et al., 1999; Sanz et al., 1999).

In general, current work has centered on their composite properties and the possibility of tuning their chemistry, by using effects from a wide variety of templates and of additives (Wang \& Gao, 2005a; Wang \& Gao, 2005b). However, investigations of new synthetic methods are still comparatively less exploited. For our interest in studying inorganic synthesis, herein we report the hydrothermal synthesis, and the crystal structure of the title compound. which is insoluble in water and in common organic solvents. It crystallizes in the monoclinic space group C2/m. The molecular structure, shown in Scheme 1 , consists of three nickel ions, two phosphate ions, and eight water molecules. The PO_{4} anions and the Ni cations are of normal valences, i.e. their valences are -3 , and +2 respectively.

The structure of nickel(II) phosphate octahydrate is shown in Fig. 1.
Both Ni atoms have a slightly distorted octahedral geometry. Ni atoms are located in two different environments, one Ni atom is surrounded by four water molecules and the remaining coordination sites are ocuppied by two oxygen atoms of two phosphates respectively. In this case, the Ni atoms are surrounded by two phosphates. The other Ni atom and its symmetry generated mate are surrounded by two water molecules, respectively. Oxygen atoms of the phosphates occupy the remaining four sites to complete the octahedral coordination. In this condition the two Ni atoms are each surrounded by three phosphates, such that two phosphates are parallel, and antiparallel with the other phosphate.

The P atoms of the phosphates do not participate in forming coordination bonds. All the P atoms make four $\mathrm{P}-\mathrm{O}$ bonds. $\mathrm{Ni}-\mathrm{O}$ bond distances are normal. The $\mathrm{P}-\mathrm{O}$ bond distances are in the range of 1.539 (3)-1.562 (3) \AA, the average value is $1.551 \AA$, and the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles are in the range of 106.73 (16)-113.64 (16) degree, the average value is 110.18 degree. These geometry parameters are in good agreement with the reported results (Ke et al., 2001). The $\mathrm{Ni}-\mathrm{O}$ (water) bond lengths are within the reported range (Kuratieva et al., 2003).

The phosphate anion coordinates to two metal atoms in a chelating form with two oxygen atoms. A further bridge is to the third metal ion with one of the remaining oxygen atoms.

Two phosphate and two Ni atoms share a four-membered ring, and an eight-membered ring such that the four membered ring is inside the eight membered ring. In the four membered rings, the $\mathrm{Ni}-\mathrm{Ni}$ distance is $2.909 \AA$, while the distance between the Ni forming the four-membered rings and the Ni adjacent to the four-membered rings is $8.059 \AA$. The eight membered rings are connected with third symmetry-generated nickel atom linked through phosphate anions to provide an one dimensional chain structure. Adjacent chains were connected through hydrogen bonds to provide three-dimensional network topology, which is shown in Fig. 2.

supplementary materials

Experimental

All reagents and solvents were used as received.

Blue block crystals of the title compound were synthesized hydrothermally in a 23 ml Teflon-lined autoclave by heating a mixture of 1-(4-($1 H$-imidazol -1-yl)butyl)- $1 H$-imidazole ($0.143 \mathrm{~g}, 0.75 \mathrm{mmol}$), nickel acetate dihydrate ($0.25 \mathrm{~g}, 1 \mathrm{mmol}$), phosphoric acid $(0.11 \mathrm{~g}, 1 \mathrm{mmol})$, and deionized water $(6 \mathrm{ml})$ at 130 degree for 10 days. Then it was slowly cooled to room temperature, giving blue block crystals. Yield (based on $\mathrm{Ni}(\mathrm{Ac}) 2.2 \mathrm{H} 2 \mathrm{O}): 0.11 \mathrm{~g}, 64.7 \%$.

Refinement

Hydrogen atoms bound to water molecules were located in the Fourier difference map, and their distances were fixed, and subject to an $\mathrm{O}-\mathrm{H}=0.85 \AA$ with deviation of positive and negative $0.01 \AA$ restraint. The coordinates of the water H atoms were localized by applying the HYDROGEN program (Nardelli, 1999).

Figures

Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The symmetry codes are: $(a)-x+1, y$, $-z+1 ;(b)-x+2, y,-z+3 ;(c)-x+1,-y,-z+1 ;(d) 1-x,-y, 2-z ;(e)-x+2,-y,-z+3 ;$ (f) $x,-y,-1+z$; (g) $x,-y, z$; (h) $x,-y, 1+z$

Fig. 2. Three dimensional network structure formed via hydrogen bonds.

Poly[octaaquadi- μ-phosphato-trinickel(II)]

Crystal data

$\left[\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]$
$M_{r}=510.14$
Monoclinic, C2/m
$a=9.963(3) \AA$
$b=13.225$ (4) \AA
$c=4.6406(14) \AA$
$\beta=104.730(3)^{\circ}$
$V=591.4(3) \AA^{3}$
$Z=2$
$F_{000}=516$
$D_{\mathrm{x}}=2.865 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
$\mu=5.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, blue
$0.26 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD Diffractometer
553 independent reflections

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.351, T_{\text {max }}=0.414$
1516 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.080$
$S=1.10$
553 reflections
55 parameters
Primary atom site location: structure-invariant direct methods

513 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.1^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-7 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-5 \rightarrow 5$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0471 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.70$ e \AA^{-3}
$\Delta \rho_{\min }=-0.58$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Ni1	1.0000	0.0000	1.5000	$0.0107(3)$
Ni2	0.5000	$0.10997(4)$	0.5000	$0.0105(3)$
P1	$0.68525(10)$	0.0000	$1.1161(2)$	$0.0094(3)$
O1	$0.8428(3)$	0.0000	$1.1229(6)$	$0.0127(6)$
O2	$0.6046(3)$	0.0000	$0.7859(6)$	$0.0111(6)$
O3	$0.6554(2)$	$-0.09749(16)$	$1.2706(4)$	$0.0127(5)$
O4	$1.0974(2)$	$0.11417(14)$	$1.3104(5)$	$0.0145(5)$
H1	1.1208	0.0890	1.1618	0.022^{*}
H2	1.1722	0.1344	1.4293	0.022^{*}
O5	$0.3964(2)$	$0.22217(18)$	$0.2226(5)$	$0.0170(5)$

H3	0.3753	0.2054	0.0398	0.025^{*}
H4	0.4440	0.2759	0.2315	0.025^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0091(4)$	$0.0104(5)$	$0.0115(4)$	0.000	$0.0007(3)$	0.000
Ni2	$0.0103(4)$	$0.0087(4)$	$0.0117(4)$	0.000	$0.0015(3)$	0.000
P1	$0.0069(6)$	$0.0100(7)$	$0.0105(6)$	0.000	$0.0006(4)$	0.000
O1	$0.0069(14)$	$0.0174(17)$	$0.0127(14)$	0.000	$0.0003(11)$	0.000
O2	$0.0099(14)$	$0.0094(16)$	$0.0127(15)$	0.000	$0.0006(11)$	0.000
O3	$0.0129(11)$	$0.0122(12)$	$0.0127(11)$	$0.0011(8)$	$0.0026(9)$	$-0.0004(9)$
O4	$0.0119(11)$	$0.0171(14)$	$0.0143(11)$	$-0.0009(9)$	$0.0028(9)$	$-0.0005(9)$
O5	$0.0204(12)$	$0.0143(12)$	$0.0146(11)$	$0.0017(10)$	$0.0015(9)$	$0.0025(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

Ni1-O1	2.030 (3)
$\mathrm{Ni}-\mathrm{O} 1^{\text {i }}$	2.030 (3)
$\mathrm{Ni} 1-\mathrm{O} 4^{\text {i }}$	2.105 (2)
Ni1-O4	2.105 (2)
$\mathrm{Ni}-\mathrm{O} 4^{\text {ii }}$	2.105 (2)
Ni1-O4 $4^{\text {iii }}$	2.105 (2)
$\mathrm{Ni} 2-\mathrm{O} 5^{\text {iv }}$	2.061 (2)
Ni2-O5	2.061 (2)
$\mathrm{Ni} 2-\mathrm{O} 2{ }^{\text {v }}$	2.063 (2)
$\mathrm{Ni} 2-\mathrm{O} 2$	2.063 (2)
$\mathrm{Ni} 2-\mathrm{O} 3^{\text {vi }}$	2.097 (2)
$\mathrm{Ni} 2-\mathrm{O} 3{ }^{\text {vii }}$	2.097 (2)
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 1^{\text {i }}$	180.0
$\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 4{ }^{\text {i }}$	91.36 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 4^{\mathrm{i}}$	88.64 (8)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 4$	88.64 (8)
$\mathrm{O} 1{ }^{\mathrm{i}}$ - $\mathrm{Ni} 1-\mathrm{O} 4$	91.36 (8)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 4$	180.0
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 4^{\text {ii }}$	88.64 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 4^{\text {ii }}$	91.36 (8)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 4{ }^{\text {ii }}$	88.32 (12)
$\mathrm{O} 4-\mathrm{Ni}-\mathrm{O} 4^{\mathrm{ii}}$	91.68 (12)
$\mathrm{O} 1-\mathrm{Ni1}-\mathrm{O} 4^{\text {iii }}$	91.36 (8)
$\mathrm{O} 1^{\text {i }}-\mathrm{Ni1}-\mathrm{O} 4{ }^{\text {iii }}$	88.64 (8)
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{O} 4^{\text {iii }}$	91.68 (12)
$\mathrm{O} 4-\mathrm{Ni}-\mathrm{O} 4^{i i i}$	88.32 (12)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Ni} 1-\mathrm{O} 4^{\text {iii }}$	180.0

$\mathrm{Ni} 2-\mathrm{Ni} 2{ }^{\text {V }}$	2.9086 (14)
P1-O2	1.539 (3)
$\mathrm{P} 1-\mathrm{O} 3{ }^{\text {ii }}$	1.540 (2)
P1-O3	1.540 (2)
P1-O1	1.562 (3)
$\mathrm{O} 2-\mathrm{Ni} 2{ }^{\text {v }}$	2.063 (2)
$\mathrm{O} 3-\mathrm{Ni} 2^{\text {vi }}$	2.097 (2)
O4-H1	0.8500
O4-H2	0.8499
O5-H3	0.8499
O5-H4	0.8499
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Ni} 2-\mathrm{O} 3{ }^{\text {vii }}$	86.31 (10)
$\mathrm{O} 2-\mathrm{Ni} 2-\mathrm{O}^{\text {vii }}$	87.33 (9)
$\mathrm{O} 3{ }^{\mathrm{vi}}-\mathrm{Ni} 2-\mathrm{O} 3{ }^{\text {vii }}$	170.97 (12)
$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Ni} 2-\mathrm{Ni} 2{ }^{\text {v }}$	136.04 (7)
$\mathrm{O} 5-\mathrm{Ni} 2-\mathrm{Ni} 2{ }^{\text {v }}$	136.04 (7)
$\mathrm{O} 2{ }^{\mathrm{v}}$ - $\mathrm{Ni} 2-\mathrm{Ni} 2^{\mathrm{v}}$	45.19 (6)
$\mathrm{O} 2-\mathrm{Ni} 2-\mathrm{Ni}^{2}{ }^{\text {v }}$	45.19 (6)
$\mathrm{O} 3{ }^{\mathrm{vi}}-\mathrm{Ni} 2-\mathrm{Ni} 2^{\mathrm{v}}$	85.49 (6)
$\mathrm{O} 3{ }^{\text {vii }}-\mathrm{Ni} 2-\mathrm{Ni} 22^{\text {v }}$	85.49 (6)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3{ }^{\text {ii }}$	110.48 (10)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	110.48 (10)
$\mathrm{O} 3{ }^{\text {ii }}$-P1-O3	113.64 (16)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	106.73 (16)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{P} 1-\mathrm{O} 1$	107.60 (10)
O3-P1-O1	107.60 (10)

sup-4

supplementary materials

$\mathrm{O} 5{ }^{\text {iv }}-\mathrm{Ni} 2-\mathrm{O} 5$	87.92 (14)	P1-O1-Ni1	124.65 (17)
$\mathrm{O} 5^{\text {iv }}-\mathrm{Ni} 2-\mathrm{O} 2^{\mathrm{v}}$	178.67 (9)	$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ni} 2{ }^{\text {v }}$	133.69 (7)
$\mathrm{O} 5-\mathrm{Ni} 2-\mathrm{O} 2^{\mathrm{v}}$	90.86 (9)	$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ni} 2$	133.69 (7)
$\mathrm{O} 5{ }^{\text {iv }}-\mathrm{Ni} 2-\mathrm{O} 2$	90.86 (9)	$\mathrm{Ni} 2{ }^{\mathrm{v}}-\mathrm{O} 2-\mathrm{Ni} 2$	89.63 (12)
$\mathrm{O} 5-\mathrm{Ni} 2-\mathrm{O} 2$	178.67 (9)	$\mathrm{P} 1-\mathrm{O} 3-\mathrm{Ni} 2^{\text {vi }}$	123.84 (12)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Ni} 2-\mathrm{O} 2$	90.37 (12)	Ni1-O4-H1	108.0
$\mathrm{O} 5^{\text {iv }}-\mathrm{Ni} 2-\mathrm{O} 3^{\text {vi }}$	93.26 (8)	Ni1-O4-H2	112.1
$\mathrm{O} 5-\mathrm{Ni} 2-\mathrm{O} 3^{\text {vi }}$	93.23 (9)	$\mathrm{H} 1-\mathrm{O} 4-\mathrm{H} 2$	105.9
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Ni} 2-\mathrm{O} 3{ }^{\text {vi }}$	87.33 (9)	Ni2-O5-H3	113.1
$\mathrm{O} 2-\mathrm{Ni} 2-\mathrm{O} 3^{\text {vi }}$	86.31 (10)	Ni2-O5-H4	112.8
$\mathrm{O} 5^{\text {iv }}-\mathrm{Ni} 2-\mathrm{O} 3^{\text {vii }}$	93.23 (9)	H3-O5-H4	105.1
$\mathrm{O} 5-\mathrm{Ni} 2-\mathrm{O} 3{ }^{\text {vii }}$	93.26 (8)		
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ni} 1$	180.0	$\mathrm{O} 5^{\text {iv }}-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{P} 1$	18.9 (2)
$\mathrm{O} 3{ }^{\text {ii }} \mathrm{P} 1-\mathrm{O} 1-\mathrm{Ni} 1$	61.41 (10)	$\mathrm{O} 5-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{P} 1$	-4(4)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ni} 1$	-61.41 (10)	$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{P} 1$	-161.6 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{P} 1$	-98 (100)	$\mathrm{O} 3^{\text {vi }}-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{P} 1$	-74.3 (2)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Ni1}-\mathrm{O} 1-\mathrm{P} 1$	45.86 (6)	$\mathrm{O} 3{ }^{\text {vii }} \mathrm{N} \mathrm{Ni} 2-\mathrm{O} 2-\mathrm{P} 1$	112.1 (2)
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{P} 1$	-134.14 (6)	$\mathrm{Ni} 2{ }^{\mathrm{v}}-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{P} 1$	-161.6 (3)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{Pl}$	134.14 (6)	$\mathrm{O} 5^{\text {iv }}-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{Ni}^{2}$	-179.48 (8)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{P} 1$	-45.86 (6)	$\mathrm{O} 5-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{Ni} 2{ }^{\mathrm{v}}$	157 (4)
$\mathrm{O} 3{ }^{\mathrm{ii}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ni}^{\text {v }}$	-140.39 (17)	$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{Ni}^{2}$	0.0
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ni} 2{ }^{\mathrm{v}}$	-13.8 (3)	$\mathrm{O} 3^{\text {vi }}-\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{Ni} 2{ }^{\text {v }}$	87.30 (9)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ni}^{2}$	102.92 (19)	$\mathrm{O} 3{ }^{\text {vii }}$ - $\mathrm{Ni} 2-\mathrm{O} 2-\mathrm{Ni}^{\text {2 }}$	-86.29 (9)
$\mathrm{O} 3{ }^{\mathrm{ii}}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ni} 2$	13.8 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3-\mathrm{Ni} 2^{\text {vi }}$	-93.29 (16)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2-\mathrm{Ni} 2$	140.39 (17)	$\mathrm{O} 3^{\mathrm{ii}}-\mathrm{P} 1-\mathrm{O} 3-\mathrm{Ni} 2^{\mathrm{vi}}$	31.5 (2)
O1-P1-O2-Ni2	-102.92 (19)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3-\mathrm{Ni}^{2}{ }^{\text {vi }}$	150.56 (14)

Symmetry codes: (i) $-x+2,-y,-z+3$; (ii) $x,-y, z$; (iii) $-x+2, y,-z+3$; (iv) $-x+1, y,-z+1$; (v) $-x+1,-y,-z+1$; (vi) $-x+1,-y,-z+2$; (vii) $x,-y, z-1$.

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\text {viii }}$	0.85	1.87	$2.700(3)$	164
$\mathrm{O} 4 — \mathrm{H} 2 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.85	1.98	$2.731(3)$	147
$\mathrm{O} 5 — \mathrm{H} 3 \cdots \mathrm{O} 3^{\mathrm{v}}$	0.85	2.00	$2.761(3)$	149
$\mathrm{O} 5 — \mathrm{H} 4 \cdots \mathrm{O} 4^{\mathrm{ix}}$	0.85	2.07	$2.906(3)$	167

Symmetry codes: (viii) $-x+2,-y,-z+2$; (i) $-x+2,-y,-z+3$; (v) $-x+1,-y,-z+1$; (ix) $x-1 / 2,-y+1 / 2, z-1$.
supplementary materials

Fig. 1

Fig. 2

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[octaaquadi- μ-phosphato-trinickel(II)]. Corrigendum

Shouwen Jin, ${ }^{\text {a* }}$ Daqi Wang, ${ }^{\text {b }}$ Xinjun Gao, ${ }^{\text {a }}$ Xianhong Wen ${ }^{\text {a }}$ and Jianzhong Zhou ${ }^{\text {a }}$

${ }^{\text {a }}$ Faculty of Science, ZheJiang Forestry University, Lin'An 311300, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Liaocheng University, Shandong 252059, People's Republic of China
Correspondence e-mail: jinsw@zjfc.edu.cn
Received 7 January 2008; accepted 21 January 2008

A correction is made to the name of the first author in Shouwen, Wang, Gao, Wen \& Zhou [Acta Cryst. (2008), E64, m259].

In the paper by Shouwen, Wang, Gao, Wen \& Zhou [Acta Cryst. (2008), E64, m259], the name of the first author is given incorrectly. The correct name should be Shouwen Jin, as given above.

